What happened for the learners?
I have a group of learners working below the National Standard in maths. In particular I have noticed that their maths knowledge is low, and this was affecting their ability to solve higher level problems and use higher level strategies. We focussed mainly around number knowledge, and a big part of this was of course our times tables. Most of these learners were limited to mostly 2’s, 10’s and some 5’s, but now the majority of the group know most “well a decent chunk” of their times tables, which is fantastic. They also have a more concrete understanding of their add/sub facts and fractions knowledge. By having these basic facts available for instant recall, they have been able to be more successful when attempting some higher level problems, and when using higher level strategies. More than this though, there has been a huge culture shift in the group in regards to maths time and problem solving learning.
What evidence do I have of this happening?
First and foremost my evidence has been from working with the group and observing the changes throughout the year. We have shifted from “eyes rolling into the back of our heads” at the mention of times tables, to confident and actively engaged problem solving sessions. Learning basic facts changed from something that was perceived as a pointless chore, to a purposeful and rewarding exercise.
In term 2 I started doing times table tests with the group. It was a selection of 20 multiplication and 20 division questions (1-10 table). In the beginning we were averaging about 30% on the times tables, and 10% on the division. By the end of the year our group average is more like 75% on times tables, and 40% on division, with some learners even reaching 100% on both.
On Gloss our results are mixed, however there has been a lift in Mult/ Div across the whole group which supports the shift I have seen in class. In some cases where they have not necessarily moved forwards on the test with regards to which stage they scored, they have still made progress towards that next stage i.e. a combination of multiplication facts, and skip counting to get the right answer. 5 x 5 = 25, 30, 35, 40, 45 etc.
The PAT results were at first a bit disappointing, I didn’t see the shift that I had expected and hoped to see, even from the learners who I felt had been most successful during the inquiry. It wasn’t until I broke the test down to the question level that I started to see some evidence of improvement. While their overall score had not significantly improved (or in some cases even gone backwards). There was a clear improvement amongst the lower level questions, specifically the questions At and Below standard. While that might not sound so impressive on it’s own, it tells me is that this group understood and solved more of the questions at their own level. So even though they actually answered less answers correct on the test, more of their correct answers were likely ones they “knew” rather than “guessed”.
If you read the multiple choice answers offered by the test, you can actually see where they have attempted some of the other higher level questions too. The test “meanly” offers answers in the multiple choice questions that would be the answer if you solved them using lower level strategies or with typical misconceptions.
So they realistically probably had more chance taking a 1-in-4 chance stab in the dark at getting the right answer.
What did I do to make this happen?
To make this shift I have done a number of things, and it’s taken me awhile to figure out what it was I needed to do. These are not kids who have historically made accelerated shift, and I knew from teaching the same group last year that much of the maths knowledge learning we had done, had not stuck.
I began first by offering more opportunities for basic facts learning, tightening up some routines, and giving them more resources to work on during non-group time learning. This didn’t seem to be making much of an impact, and so I started doing more reading into how kids obtain and remember basic facts. I read that kids often don’t value basic facts, when they don’t truly understand the purpose of them, and in some cases even what a “basic fact” is. We started spending group time discussing basic facts, and why they are important, we started making jokes such as “Basic facts are like cheat codes and shortcuts”. This created some value behind learning a basic fact set, and we started making some progress.
However it wasn’t until I started spending more teacher time actually specifically teaching the group how to acquire their times tables that I really started to see progress. The repetitive and deliberate acts of teaching, ended up a far superior and more successful than any digital resource I made or found online.. I had thought that the way I learned timetables at school was old fashioned and boring, however it is still considered by most experts to be the most effective. Check out a more detailed post about what I did in group sessions here.
I also began creating open ended tasks that allowed the learners to utilise their new knowledge in authentic experiences see here, here, here and here. Not just questions, but activities were having facts for instant recall were necessary for success.
Wonderings for what next?
While this inquiry was successful in many ways, there are other ways where I didn’t achieve everything that I hoped to. There was not the level of accelerated achievement I had hoped for, and although I learned a lot about teaching knowledge alongside strategy, it took me too long to get a good system in place. I also think that the new teaching strategies I put in place were not happening at the right frequency. Next year with my new cohort I see true value in continuing the work I have done for this inquiry, but to make what I have learned a more established and regular part of my maths routine. Consistency throughout the year I believe will be key to more successful outcomes for the learners.
While this inquiry was successful in many ways, there are other ways where I didn’t achieve everything that I hoped to. There was not the level of accelerated achievement I had hoped for, and although I learned a lot about teaching knowledge alongside strategy, it took me too long to get a good system in place. I also think that the new teaching strategies I put in place were not happening at the right frequency. Next year with my new cohort I see true value in continuing the work I have done for this inquiry, but to make what I have learned a more established and regular part of my maths routine. Consistency throughout the year I believe will be key to more successful outcomes for the learners.
Comments
Post a Comment